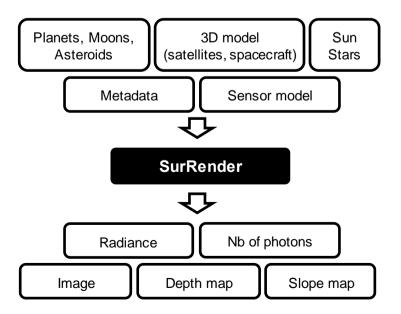


SurRender software Technical features


The current version of the software is SurRender 6.0. The SurRender software is used through a client-server mode: SurRender's main application runs a server. The SurRender server can be located on the same computer as the client, or on a remote computer (possibly a cloud). The server receives commands from the client trough a TCP/IP link, and sends the resulting image back.

The SurRender client is provided to the user as a unified API for many languages. Especially, one can call SurRender from Lua, C++11, MATLAB (with or without Simulink) or Python 3.

SurRender supports a great variety of scene configurations. A schematic of the scene components is shown in the next figure. SurRender capabilities are presented in more details in a dedicated article available online. In the table below, we summarize SurRender main technical features.

Input and Output

Software	- Linux or Windows
~	- Client-server protocol (TCP/IP)
	- Multiple interfaces: Python 3, MATLAB/Simulink, C++, Lua
	- Hardware in the loop
	- Cloud computing
Rendering	- Raytracing (CPU): physically accurate
	- OpenGL (GPU): real-time
	- Highly efficient simulation of sparse scenes (space environment)
	- Highly optimized to handle a wide range of resolutions and detail levels
	The raytracer implements the physical principles of light propagation
Supported data	- Digital Elevation Model (DEM), Textures, albedo maps
	- JPG, TIF, PNG,
	- NASA PDS data format
	- Giant textures (up to 256 TB)
	- Procedural texture/DEM generator (fractal)
	- 3D meshes (OBJ, 3DS, PLY, Collada,)
	SurRender handles data at Solar System scales, from millions of kilometers to sub-meter
	distances
Objects	- Artificial objects: 3D mesh models (satellites, robotic spacecrafts)
	- Planets, asteroids, moons: analytical shapes
	- Very high-res planet-wide DEMs
	- Sun, star background
	- Customshapes
	Solar System objects are stored in memory much more efficiently than meshes
Image acquisition	- Images rendered in physical units (W/m^2)
	- Slope maps, depth maps
	- Various projection models & distortions (pinhole, fisheye, orthographic)
	- PSF, variable PSF in the FOV.
	- Achromatism, defocus
	- Acquisition modes (sampling): global shutter, push-broom, snapshot
	- Windowing (variable integration time in the pixels)
	The raytracer design simulates the sensors working principle at physical level (photons)
Models	- Embedded modelling language SuMoL (with dedicated editor)
	- Analytical or numerical models can be implemented at will
	- BRDF, projection, sensors, geometrical objects, etc.
Sensors	- Sensor models: generic sensor, HAS2, HAS3, JUICE/NAVCAM
	- Various effects: integration time, readout noise, photon noise, dark current,
	transmission, gain, quantum efficiency, pupil diameter, motion blur
	- Active sensors: LIDAR, time-of-flight cameras (with light spots, lasers)
DDDE	- Optical (B&W, RGB, multispectral) or infrared (no thermal model yet)
	- Spectrum and bandwidth
BRDF	- Lambertian (mate surfaces)
	- Mirror
	- Hapke (Moon / asteroid surfaces, regolith)
	- Oren-Nayar (mate)
Notoble officiate	- Phong (plastic, MLI)
	- Custommodels
Notable effects	- Geometrically correct reflections & shadows
	- Eclipses, soft shadows
	- Blooming
	- Secondary illuminations
	- Continuous simulation over large distance range (from millions of km to sub-
	meter scales)
	- Simulates motions, including detector motions (push-broom, rolling-shutter,
	micro-vibrations,)
	- Subpixel accuracy